

CUBESAT HIGH IMPULSE PROPULSION SYSTEM (CHIPS) JULY 2024

System Overview

The CU Aerospace (CUA) Cubesat High Impulse Propulsion System (CHIPS) is a miniaturized, well-integrated propulsion solution tailored for small satellites, combining both a main thruster and a three-axis attitude control system (ACS). Utilizing CUA's high efficiency resistojet (superheater) technology and non-toxic, inert propellants, CHIPS offers impressive performance in a compact package. Proven valving has been cycled to >120 million actuations and can be used with self-pressurizing, non-toxic, and inert propellants. Waste heat from the electronics and resistojet is efficiently regeneratively recovered and to

evaporate propellant, resulting in low system temperature rise (~1°C) over 10-minute operating cycles.

Our CHIPS technology will provide a great deal of mission flexibility with minimum risk providing a powerful, customizable propulsion system with minimal size requirement. The illustrated CHIPS-180 is an ultra-compact 0.54U fully-throttleable system (10 cm x 9 cm x 6 cm package size) having 180 N-s of total impulse with self-pressurizing R134a propellant. System set-points, system status, and firing telemetry are all accessible and configurable through a customizable interface port. CHIPS technology can be customized in size to meet customer-specific mission requirements. While CHIPS' warm-gas resistojet Isp is 40-50% higher than cold-gas Isp, CHIPS can also be packaged as a cold-gas-only system requiring reduced power. The CHIPS package can incorporate up to 8 ACS thrusters for 6 degree-of-freedom (6DOF) operation.

Parameter	CHIPS-180	CHIPS-500	CHIPS-1000	Units
Thruster System Package Volume	540 (6 x 9 x 10)	1,300 (13 x 10 x 10)	2,500 (12.5 x 20 x 10)	cm ³
Propellant Mass	277	770	1,513	g
System Wet Mass	1,027	1,835	3,130	g
Power Draw (when thrusting)	20	25	30	W
Mass Flow Rate	23 [34]	45	45	mg/s
Thrust	15 [15]	25 [18]	31 [21]	mN
Specific Impulse	67 [45]	69 [46]	70 [46]	S
Total Impulse	176 [118]	505 [350]	1,030 [715]	N-s
Volumetric Impulse	326 [218]	387 [270]	410 [285]	N-s/liter
Maximum Continuous Thrust Time	10	10	10	min
Minimum Impulse Bit	< 0.1	< 0.1	< 0.1	mN-s

Performance Specifications

Note: values in square brackets [xx] represent performance when run in cold gas mode.

System Features

Operation:

- Two operational modes:
 - Warm gas mode for higher specific impulse, large total impulse or collision avoidance maneuvers.
 - Cold gas mode for minimum or small total impulse maneuvers (attitude & roll control).
- Overall control authority: roll, pitch, yaw, ±X/Y/Z
 - 6 Degree of Freedom (6DOF) achievable with 8 ACS thrusters for precision
- Highly configurable controller for on-orbit update of system parameters, including:
 - Thrust duration
 - Plenum pressure (thrust)
 - Superheater power level (specific impulse)
 - Temperature set-points
 - Fault set-points
- Telemetry and system status packets for health monitoring
- Dedicated propellant heaters for continuous operation below 0°C ambient temperature
- Propellant temperature sensor for closed-loop propellant temperature regulation
- Propellant vaporizer ensuring 100% vapor delivered from liquid storage
- Pressure sensor for closed-loop propellant mass flow control and thrust throttling

- Voltage and current sensors for closed-loop power regulation, monitoring, troubleshooting, and over-current protection.
- Life span: 3+ years from propellant load.

Mechanical:

- Low mass, high strength all-welded Ti-6Al-4V (Grade 5) propellant tank
- Reliable valve technology:
 - Valves tested to >120,000,000+ cold gas firings retaining low leak rate $\leq 1 \times 10^{-4}$ scc/sec for GHe
 - System is two-fault-tolerant against leakage
- Volume optimized:
 - All mechanical and electrical subsystems highly integrated into tank structure
 - Miniaturized system only 0.54U
 - Custom tank sizes available
 - Self-contained electronics control board enclosed in gas plenum
- High-density, self-pressurizing R134a baseline (R236fa alternate) propellant
 - Green, non-toxic, non-flammable and inert
 - Chemically stable, high critical temperature, low freezing point, and low vapor pressure

0.54U CHIPS WITH 1 PRIMARY & 8 ACS THRUSTERS

Dimensions are for illustrative purposes only. CHIPS is highly adaptable to a wide range of customer-specific geometries. Inquire to see how CUA can adapt CHIPS to meet your mission requirements.

CU Aerospace, L.L.C. | 3001 Newmark Dr. | Champaign, IL 61822 <u>info@cuaerospace.com</u> | www.cuaerospace.com Information contained in this document should not be used for design purposes, but for informational purposes only. CU Aerospace reserves the right to update the specification sheet without notice.