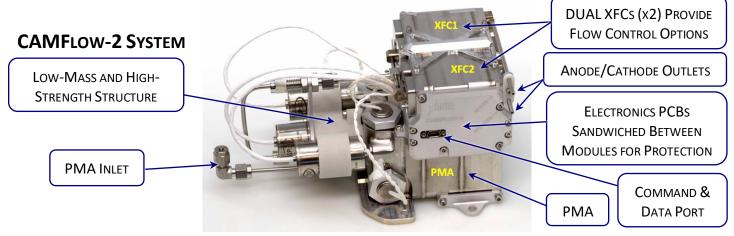


## CYCLE AUTOMATED MASS FLOW (CAMFLOW) CONTROLLER FOR HALL AND ION THRUSTERS

DECEMBER 2021

CUA's Cycle Automated Mass Flow (CAMFlow) system is a highly reliable, fixed-frequency flow controller for electric propulsion systems. CAMFlow uses an innovative control scheme that enables stable operation, even for the low flow rates necessary for sub-kW Hall effect thrusters. This methodology reduces system complexity, places the onus of reliability on valve cycle life, and allows for a direct correlation between system life and valve cycle life.


The CAMFlow system consists of multiple modular sections: (1) the Pressure Management Assembly (PMA) accepts up to 2,500 psia of input pressure; (2) the primary Xenon Flow Controller (XFC) controls the output flow rate to < ±3%; and (3) a secondary, optional XFC provides an initial boost to the cathode flow leg and allows operation with heaterless cathodes. Through the use of less expensive spacerated components, CAMFlow provides a reliable low-cost flow controller that is well-suited for sub-kW Hall and ion thrusters.

The CAMFlow control scheme was successfully tested and validated on a 600-Watt Hall thruster. This included open loop, closed loop, and cold cathode "hard" start operations. The control valves were cycled > 120 million pulses (the equivalent of 350 kg Xe throughput at 3 mg/s) while maintaining very low leak rate.

While CAMFlow units are presently focused on smaller Hall-effect or gridded-ion electric propulsion systems having a flow rate in the 0-8 mg/s range, the technology is scalable and can be adapted for a large range of flow rates.

| CAMFlow-2 Performance                      | XFC                  | PMA                  |
|--------------------------------------------|----------------------|----------------------|
| Anode Flow Rate [mg/s]*                    | 0-8                  | 0-8                  |
| Flow Split to Cathode*                     | 0 – 15%              | N/A                  |
| Heaterless Cathode Start Flow Rate [mg/s]† | 0-8                  | 0-8                  |
| Flow Pressure Variation at Outlet          | < 3%                 | 100 +20/-80          |
| On/Off Cycles                              | > 1 x10 <sup>6</sup> | > 20,000             |
| Inlet Pressure [psia]                      | 40 – 100             | 40 – 3000            |
| Outlet Pressure [psia]                     | < 2                  | 40 – 100             |
| Total Throughput [kg]                      | >100                 | >100                 |
| Working Gases (others possible)            | Xe, Kr               | Xe, Kr               |
| Gas Cleanliness – Inline Filter [μm]       | 10                   | 10                   |
| Mass [kg]                                  | 0.7                  | 1.5                  |
| Volume [liters]                            | 0.4                  | 0.7                  |
| Internal Leakage [scc/s of He]             | < 1x10 <sup>-4</sup> | < 1x10 <sup>-4</sup> |
| External Leakage [scc/s of He]             | < 1x10 <sup>-6</sup> | < 1x10 <sup>-6</sup> |

<sup>\*</sup>Fixed setpoint, customer selectable. †Requires second XFC



Two hardware configurations:

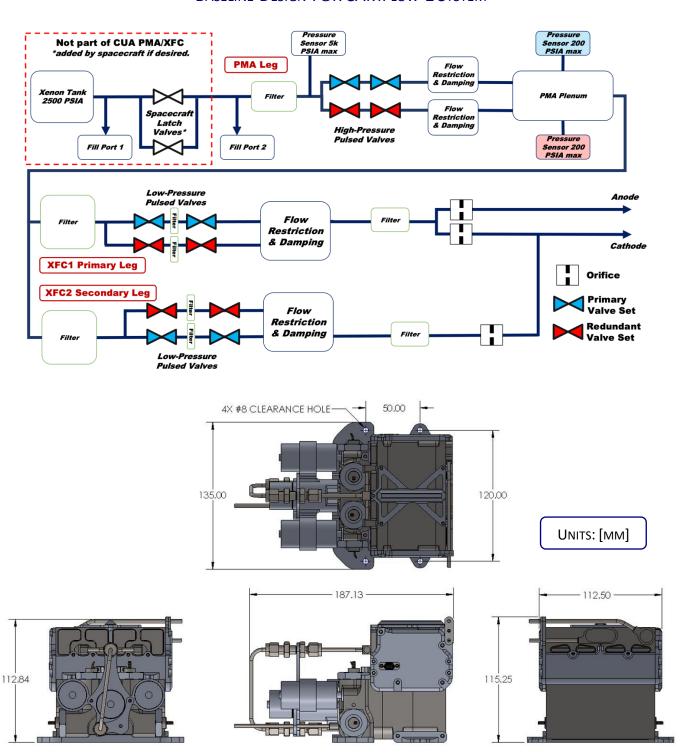
- Single XFC provides anode and cathode flow with fixed flow split
- Dual XFC provides additional cathode flow during startup (optional)

## Analog Electronics Option

- Controlled externally by PPU and BUS
- Requires externally generated voltages
- Logic inputs for enabling system and redundant valves
- Analog voltage input for main throttle
  - o PPU to close feedback loop with hall thruster current
  - o Heaterless cathode throttle proportional to PMA pressure
- Analog outputs for temperature and all pressures
- Automatic PMA recovery from a stuck valve fault

Reliable Lee Co. valve technology:

- Valves tested to > 120 million cold gas firings
- System is two-failure-tolerant against leakage


## Microcontroller Electronics Option

- Significantly more autonomous
- Requires communications inputs and single bus power input
- Can internally provide closed loop control
  - Still requires thruster current target and reading

Life span: 5+ years (based on propellant load)

System can be used with other common gaseous propellants

## BASELINE DESIGN FOR CAMFLOW-2 SYSTEM



Dimensions of the baseline CAMFlow-2 unit are for illustrative purposes only. Larger PMA pressure sensors can be substituted with smaller higher cost sensors as desired. CAMFlow is highly adaptable to a wide range of customer-specific geometries. Inquire to see how CUA can adapt CAMFlow to meet your mission requirements.